skip to main content


Search for: All records

Creators/Authors contains: "Poppett, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.

     
    more » « less
  2. ABSTRACT

    Accurate quasar classifications and redshift measurements are increasingly important to precision cosmology experiments. Broad absorption line (BAL) features are present in 15–20 per cent of all quasars, and these features can introduce systematic redshift errors, and in extreme cases produce misclassifications. We quantitatively investigate the impact of BAL features on quasar classifications and redshift measurements with synthetic spectra that were designed to match observations by the Dark Energy Spectroscopic Instrument (DESI) survey. Over the course of 5 yr, DESI aims to measure spectra for 40 million galaxies and quasars, including nearly three million quasars. Our synthetic quasar spectra match the signal-to-noise ratio and redshift distributions of the first year of DESI observations, and include the same synthetic quasar spectra both with and without BAL features. We demonstrate that masking the locations of the BAL features decreases the redshift errors by about 1 per cent and reduces the number of catastrophic redshift errors by about 80 per cent. We conclude that identifying and masking BAL troughs should be a standard part of the redshift determination step for DESI and other large-scale spectroscopic surveys of quasars.

     
    more » « less
  3. ABSTRACT

    We measure the tidal alignment of the major axes of luminous red galaxies (LRGs) from the Legacy Imaging Survey and use it to infer the artificial redshift-space distortion signature that will arise from an orientation-dependent, surface-brightness selection in the Dark Energy Spectroscopic Instrument (DESI) survey. Using photometric redshifts to downweight the shape–density correlations due to weak lensing, we measure the intrinsic tidal alignment of LRGs. Separately, we estimate the net polarization of LRG orientations from DESI’s fibre-magnitude target selection to be of order 10−2 along the line of sight. Using these measurements and a linear tidal model, we forecast a 0.5 per cent fractional decrease on the quadrupole of the two-point correlation function for projected separations of 40–80 h−1 Mpc. We also use a halo catalogue from the Abacussummit cosmological simulation suite to reproduce this false quadrupole.

     
    more » « less
  4. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less
  5. ABSTRACT

    We describe the target selection and characteristics of the DESI Peculiar Velocity Survey, the largest survey of peculiar velocities (PVs) using both the fundamental plane (FP) and the Tully–Fisher (TF) relationship planned to date. We detail how we identify suitable early-type galaxies (ETGs) for the FP and suitable late-type galaxies (LTGs) for the TF relation using the photometric data provided by the DESI Legacy Imaging Survey DR9. Subsequently, we provide targets for 373 533 ETGs and 118 637 LTGs within the Dark Energy Spectroscopic Instrument (DESI) 5-yr footprint. We validate these photometric selections using existing morphological classifications. Furthermore, we demonstrate using survey validation data that DESI is able to measure the spectroscopic properties to sufficient precision to obtain PVs for our targets. Based on realistic DESI fibre assignment simulations and spectroscopic success rates, we predict the final DESI PV Survey will obtain ∼133 000 FP-based and ∼53 000 TF-based PV measurements over an area of 14 000 deg2. We forecast the ability of using these data to measure the clustering of galaxy positions and PVs from the combined DESI PV and Bright Galaxy Surveys (BGS), which allows for cancellation of cosmic variance at low redshifts. With these forecasts, we anticipate a 4 per cent statistical measurement on the growth rate of structure at z < 0.15. This is over two times better than achievable with redshifts from the BGS alone. The combined DESI PV and BGS will enable the most precise tests to date of the time and scale dependence of large-scale structure growth at z < 0.15.

     
    more » « less
  6. ABSTRACT

    We investigate using three-point statistics in constraining the galaxy–halo connection. We show that for some galaxy samples, the constraints on the halo occupation distribution parameters are dominated by the three-point function signal (over its two-point counterpart). We demonstrate this on mock catalogues corresponding to the Luminous red galaxies (LRGs), Emission-line galaxies (ELGs), and quasars (QSOs) targeted by the Dark Energy Spectroscopic Instrument (DESI) Survey. The projected three-point function for triangle sides less up to 20 h−1 Mpc measured from a cubic Gpc of data can constrain the characteristic minimum mass of the LRGs with a preci sion of 0.46 per cent. For comparison, similar constraints from the projected two-point function are 1.55 per cent. The improvements for the ELGs and QSOs targets are more modest. In the case of the QSOs, it is caused by the high shot-noise of the sample, and in the case of the ELGs, it is caused by the range of halo masses of the host haloes. The most time-consuming part of our pipeline is the measurement of the three-point functions. We adopt a tabulation method, proposed in earlier works for the two-point function, to significantly reduce the required compute time for the three-point analysis.

     
    more » « less
  7. Abstract

    We report the first results of a high-redshift (z≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 <z< 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data andJ-band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤z< 6.6, down to 21.5 magnitude (AB) in thezband, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified atz≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% atz> 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Lyαabsorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars atz∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper.

     
    more » « less
  8. Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of large-scale structure over 0.4 ≤  z  ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg -2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxy-convergence cross-spectra using models based on cosmological perturbation theory, restricting to large scales that are expected to be well described by such models. Within the context of ΛCDM, combining all 4 samples and using priors on the background cosmology from supernova and baryon acoustic oscillation measurements, we find S 8  = σ 8 (Ω m /0.3) 0.5  = 0.73 ± 0.03. This result is lower than the prediction of the ΛCDM model conditioned on the Planck data. Our data prefer a slower growth of structure at low redshift than the model predictions, though at only modest significance. 
    more » « less
  9. ABSTRACT

    Analysis of large galaxy surveys requires confidence in the robustness of numerical simulation methods. The simulations are used to construct mock galaxy catalogues to validate data analysis pipelines and identify potential systematics. We compare three N-body simulation codes, abacus, gadget-2, and swift, to investigate the regimes in which their results agree. We run N-body simulations at three different mass resolutions, 6.25 × 108, 2.11 × 109, and 5.00 × 109 h−1 M⊙, matching phases to reduce the noise within the comparisons. We find systematic errors in the halo clustering between different codes are smaller than the Dark Energy Spectroscopic Instrument (DESI) statistical error for $s\ \gt\ 20\ h^{-1}$ Mpc in the correlation function in redshift space. Through the resolution comparison we find that simulations run with a mass resolution of 2.1 × 109 h−1 M⊙ are sufficiently converged for systematic effects in the halo clustering to be smaller than the DESI statistical error at scales larger than $20\ h^{-1}$ Mpc. These findings show that the simulations are robust for extracting cosmological information from large scales which is the key goal of the DESI survey. Comparing matter power spectra, we find the codes agree to within 1 per cent for k ≤ 10 h Mpc−1. We also run a comparison of three initial condition generation codes and find good agreement. In addition, we include a quasi-N-body code, FastPM, since we plan use it for certain DESI analyses. The impact of the halo definition and galaxy–halo relation will be presented in a follow-up study.

     
    more » « less
  10. ABSTRACT

    Dark Energy Spectroscopic Instrument (DESI) will construct a large and precise three-dimensional map of our Universe. The survey effective volume reaches $\sim 20\, h^{-3}\, \mathrm{Gpc}^{3}$. It is a great challenge to prepare high-resolution simulations with a much larger volume for validating the DESI analysis pipelines. AbacusSummit is a suite of high-resolution dark-matter-only simulations designed for this purpose, with $200\, h^{-3}\, \mathrm{Gpc}^{3}$ (10 times DESI volume) for the base cosmology. However, further efforts need to be done to provide a more precise analysis of the data and to cover also other cosmologies. Recently, the CARPool method was proposed to use paired accurate and approximate simulations to achieve high statistical precision with a limited number of high-resolution simulations. Relying on this technique, we propose to use fast quasi-N-body solvers combined with accurate simulations to produce accurate summary statistics. This enables us to obtain 100 times smaller variance than the expected DESI statistical variance at the scales we are interested in, e.g. $k \lt 0.3\, h\, \mathrm{Mpc}^{-1}$ for the halo power spectrum. In addition, it can significantly suppress the sample variance of the halo bispectrum. We further generalize the method for other cosmologies with only one realization in AbacusSummit suite to extend the effective volume ∼20 times. In summary, our proposed strategy of combining high-fidelity simulations with fast approximate gravity solvers and a series of variance suppression techniques sets the path for a robust cosmological analysis of galaxy survey data.

     
    more » « less